Martin Olsson is a professor and department chair at UC Berkeley. He received his PhD from UC Berkeley in 2001 after which he took postdocs at MIT, MSRI, and the Institute for Advanced Study before joining the faculty at UT Austin. He returned to UC Berkeley in 2006. In addition to his research and teaching, he has served as department chair twice (2016-2019 and presently) as well as associate dean (2021-22). Among other recognitions he has received a Sloan Fellowship and Simons Fellowship.

Olsson's research spans a broad set of topics in algebraic and arithmetic geometry including algebraic stacks, logarithmic geometry, moduli spaces, derived categories, and motives.

Benjamin Antieau received his PhD in 2010 from UIC. After postdocs at UCLA and University of Washington, he returned to UIC as a faculty member in 2014 and moved to Northwestern University in 2020. His awards include a K-theory Prize, a Simons Fellowship, and appointment as a Fellow of the AMS.

Antieau’s research focuses on Brauer groups, algebraic K-theory, and, recently, machine calculations of syntomic cohomology.

Bhargav Bhatt received his PhD from Princeton in 2010. Following postdocs at the University of Michigan and the Institute for Advanced Study (IAS), Bhatt was appointed to the faculty at Michigan in 2014, where he currently serves as the Gehring Professor of Mathematics. Starting in 2022, he has taken up the Fernholz Joint Professorship between the IAS and Princeton University. Bhatt's work has been recognized with a number of awards including a Packard Fellowship, a Compositio Prize, a Simons Investigatorship, a New Horizons Prize, a Clay Research Award, and a Nemmers Prize. He has given a number of invited lectures, including a plenary talk at the ICM in 2022.

Bhatt is broadly interested in algebraic geometry, especially its connections with number theory, commutative algebra, and algebraic topology.

Kęstutis Česnavičius is a chargé de recherche of the CNRS working at Université Paris-Saclay. He received his PhD in mathematics from MIT in 2014 under the supervision of Bjorn Poonen and has held positions at UC Berkeley and Universität Bonn prior to joining the CNRS in 2017. He is the recipient of the prize of the Lithuanian Mathematical Society in 2018.

Česnavičius is known for introducing the perfectoid approach to the study of cohomological purity questions in arithmetic geometry, which allowed him to resolve conjectures of Auslander–Goldman, of Grothendieck and, in joint work with Scholze, also of Gabber.

Dustin Clausen received his PhD from MIT in 2013 under the direction of Jacob Lurie, and after positions in Copenhagen and Bonn is currently a permanent professor of mathematics at the IHES.

He is known for his work on algebraic K-theory, on connections between homotopy theory and arithmetic, and more recently and jointly with Peter Scholze, on the development of condensed mathematics and the attendant approach to analytic geometry.

Pierre Colmez received his PhD from Grenoble and is currently Directeur de recherche at CNRS, based in Sorbonne Université (ex-Paris 6). He received the 2005 Fermat prize and was invited speaker at ICM1998 in Berlin and ECM2012 in Krakow. He also launched the 'Documents mathématiques' series of Société Mathématique de France.

Colmez works in the $p$-adic world (Hodge Theory of $p$-adic varieties, Galois représentations of $p$-adic fields and $p$-adic Langlands program), keeping an eye on applications to Number Theory.

Johan de Jong is professor and chair of the Department of Mathematics of Columbia University. He received his Ph.D. from Radboud University in the Netherlands in 1992. After postdoc positions at MPIM Bonn, University of Utrecht and Harvard, he was a professor at Princeton University and MIT before moving to his current position. He was an invited speaker at the ICM in 1998, received the Cole Prize in 2000, and was awarded the Leroy P. Steele Prize in 2022.

Johan de Jong is an algebraic geometer who has worked among other things on crystalline Dieudonn\'e module theory, $p$-divisible groups, rigid analytic spaces, moduli of rational curves on algebraic varieties, Brauer groups, and is currently the maintainer of the Stacks project.

Matthew Emerton is Professor at University of Chicago. He received his PhD from Harvard in 1998, and following a postdoc at the University of Michigan and an Assistant Professorship at University of Chicago, spent 10 years as a faculty member at Northwestern University before returning to Chicago in 2011. He was an invited speaker at the 2014 ICM.

Emerton's areas of research are number theory, arithmetic geometry, and representation theory.

Toby Gee received his PhD from Imperial College London where he is currently a professor. He is a Fellow of the American Mathematical Society, and a former winner of the Leverhulme Prize and the LMS Whitehead Prize.

Gee is a number theorist who works in the Langlands program, in particular on the modularity of p-adic Galois representations.

Jacob Lurie received his PhD from MIT and is currently the Frank C. and Florence S. Ogg Professor at the Institute of Advanced Study. He is a 2014 MacArthur Fellow and a recipient of the Breakthrough Prize in Mathematics in 2015.

His work lies at the intersection of homotopy theory and algebraic geometry, with an emphasis on the applications of higher-categorical ideas to both subjects.

Akhil Mathew received his PhD from Harvard in 2017 and was a Clay Research Fellow from 2017 to 2022. He was appointed as an Associate Professor at the University of Chicago in 2022.

Mathew's research interests are in algebraic K-theory, topological cyclic homology, and $p$-adic geometry. His contributions include descent and rigidity theorems for modules and in chromatically localized algebraic K-theory, the introduction of the arc-topology on schemes, and the calculation of syntomic cohomology for regular schemes.

Wiesława Nizioł received her PhD from Princeton University and is currently directrice de recherche at CNRS, based at IMJ-PRG, Sorbonne University. She is a Member of Academia Europaea and was an invited speaker at ICM2006 in Madrid.

She is an arithmetic algebraic geometer who works on cohomology theories, in particular on $p$-adic Hodge Theory and its applications.

Peter Scholze received his PhD from Bonn in 2012 and is currently Direktor at Max-Planck-Institut für Mathematik, Bonn. His work has been recognized with numerous awards including the Fields medal in 2018.

Scholze is an arithmetic geometer. He is known for his discovery of perfectoid geometry, condensed mathematics (with Clausen), as well as the applications of these ideas to number theory.